
Visualizing Interactive Gradient Descent
Nova S. Zhang*

MBAn Candidate
Dao Ming Lee†

MBAn Candidate

Figure 1: Going downhill fast?: A demonstration of the gradient descent visualization

ABSTRACT

.

1 INTRODUCTION

Constrained optimization seeks to minimize a cost function within
its feature space. From an initialization point, gradient descent
algorithms move iteratively in directions according to the descent
given until the algorithm converges to a local minimum.

For instance, in machine learning, this underlies the process in
which model parameters are updated. We see this in coefficients for
linear regression, and weights and biases in neural networks. The
choice of which gradient descent method and its hyperparameter
values can determine if cost minimization is likely to be achieved in
an appropriate amount of time.

In practice, black-box optimizers are often used arbitrarily or
without thorough consideration. Hence, understanding gradient de-
scent methods and how it affects factors such as time to convergence
and optimality becomes integral. This visualization seeks to close
that gap by providing an interactive medium for users to utilize and
self-educate on the basics of gradient descent.

2 GOALS

• Apply: Allows the user to perform hyperparameter tuning
(e.g. learning rates) and gradient descent method selection on
different feature spaces

• Educate: Allows the user to learn about gradient descent in
an interactive manner. To non-technical audiences, gradient

*e-mail: novaz@mit.edu
†e-mail: daoming@mit.edu

descent lends itself most aptly to visualization. The ability to
follow the respective path taken by each algorithm is integral
to understanding related phenomena (e.g. oscillation), and
being able to specify different initialization points allows users
to experience how functions

3 RELATED WORK

Ruder (2019) [3] provides a cogent introduction to gradient descent
algorithms, running the gamut from vanilla methods like stochastic
gradient descent (SGD) and momentum, to state-of-the-art methods
such as Adaptive Moment Estimation (ADAM). He covers the key
strengths and weaknesses of each approach, which does help the
user develop some intuition for algorithm selection given a particular
problem. However, the uninitiated user may experience difficulties
in grasping concepts without accompanying visualizations. Central
ideas such as how learning rate affects convergence, or the existence
of multiple local optima/saddle points that induce trapping appear to
be best understood through visualization.

In examining existing gradient descent visualizations, we found
that they went some way towards but ultimately fell short of our
goals. A large majority of them were non-interactive, relying on the
use of charts Rana (2018) [2] Saslow [4]. to demonstrate the the
different methods on sample feature spaces. As a self-learning guide,
these do not empower the user to experiment with these algorithms.

Of those that allow for user interaction, they featured fewer gra-
dient descent methods, were limited to in-built functions and fixed
hyperparameter values [1]. They also lacked the explicit compar-
isons drawn between the methods that the former had. These quanti-
tative comparisons are a key complement to insights drawn from the
visualization by confirming observations with hard data.

4 DETAILED DESCRIPTION OF SYSTEM

Our visualization system comprises of 4 nested layers:

• Domain problem characterization



• Data/Operation abstract design

• Methods (Encoding/Interaction techniques & Algorithmic de-
sign)

4.1 Domain Problem Characterization

We summarize the central issue as a lack of understanding regarding
gradient descent methods in associated applications, leading to sub-
optimal choices and outcomes. Our proposed solution is to equip
users with requisite knowledge through an interactive visualization
approach.

4.2 Data/Operation Abstract Design

We begin by mapping our approach into a series of operations and
low-level tasks. The system starts by exposing uncertainty in algo-
rithmic selection. We give a brief introduction that informs users on
practical advantages and limitations on each method, allowing target
users to realize their knowledge gap. Then, by showing first-hand
how different descent methods operate under different parameters, it
goes onto facilitate hypotheses formulation by users on the effect of
different user-defined parameters (e.g. learning rate, domain of fea-
ture space) on the results. This process of adjusting a parameter and
seeing the difference allows for learning through an explicit cause-
and-effect model. After that, the system retrieves quantitative results
and presents them to confirm or invalidate hypotheses. Once users
are comfortable with the interface, the system can retrieve custom
input for plotting, allowing the user to trial newfound knowledge on
relevant problems.

4.3 Methods

4.3.1 Encoding/Interaction Techniques

In carrying out the relevant operations, we exploited the use of
encodings and interactive techniques. In reference to Fig. 1, we first
used a contour plot to illustrate the feature space of the function.
This allows us to translate a 3D function to 2D space, yet preserve
the 3rd dimension (cost function value) through the use of color hue
and intensity.

On the left, the sidebar allows for simple navigation on our web
application. Clicking ‘Option’ allows the user to toggle its appear-
ance, enabling navigation without distracting from the visualization
centerpiece when in use. It allows users to (i) read a brief introduc-
tion to gradient descent methods, (ii) select between 3 sample feature
spaces - Gaussian Bowl, Rastrigin and Rosenbrock, (iii) build their
own custom feature space, (iv) set hyperparameters for the gradient
descent methods (i.e. learning rate).

In the top bar, we allowed the user to (i) select relevant methods
for visualization and (ii) view the no. of iterations the current method
required for convergence. Selection is carried out by clicking the
associated colored circles (E.g. Yellow for SGD) to toggle. Mousing
over them also elicits a short tooltip description that reminds the
user what it is without having to refer back to the introduction.

Next, we traced out the path of gradient descent for each method
using a line. This allows the user to follow individual gradient
descent paths to understand path and convergence dependency on
initialization parameters for a given feature space.

Finally, to quantify the difference in the key metric - no. of
iterations to convergence - we used a simple bar chart. The length
of each bar reflects individual algorithmic efficacy. Put together, it
allows the user to compare and choose the best performing method.

Throughout the process, we consistently associated the same color
with its gradient descent method to ease cognitive load. This allows
users to easily discern the paths taken by the selected methods and
their associated no. of iterations to convergence.

4.3.2 Algorithmic Design
Under the hood, we coded 5 different gradient descent methods
into Javascript: Stochastic Gradient Descent (SGD), Momentum,
RMSProp, Adam and AMSgrad. We chose a wide variety that
spans fundamental methods to more advanced techniques used in
optimizers today. This serves as the optimization engine for our
visualization and makes use of Math.js and loops to reflect the
iterative nature of gradient descent. The system takes in user input
(e.g. learning rate, variable domain/range, cost function, selected
methods) and traces out the path taken by each method using this
backend engine. It then collects the results (no. of iterations to
convergence) and reflects them on the rectangular bar and bar chart.

5 RESULTS

The key visualization produced by the system is the traced paths of
each gradient descent method on the contour plot. The visualization
allows users to not only see the path of each descent method, but
also click to pick the initialization point and show the speed (number
of iterations it takes to converge) of descent methods. The paths are
supplemented by a bar chart to quantify the results of the iterations
obtained.

6 DISCUSSION

Through a few self-conducted trials, we find that our system achieves
our stated goals of application and education.

For a user acquainted with optimization that seeks to learn gra-
dient descent method selection for an application (e.g. machine
learning), we provide a custom function section. This allows the
user to input a cost function, specify domain parameters and hyper-
parameters, to observe how a variety of gradient descent methods
perform and choose the most appropriate one.

For a user seeking to gain optimization knowledge, we anticipate
a first stop at our introduction to gradient descent to gain rudimen-
tary knowledge of the various methods. Subsequently, the user
could explore how they perform on the sample feature spaces by
clicking around different initialization points and observing iteration
counts on the top bar/bar chart. Additionally, adjusting the default
learning rates and observing the behavior examines the significance
hyperparameter tuning. In all, the user would understand how (i)
initialization points, (ii) learning rates and (iii) gradient descent
methods affect the optimization in terms of its optimality and time
to convergence.

7 FUTURE WORK

Our current visualization system achieves much of what we set out
to do, but can definitely be extended and refined.

For instance, to introduce the web application, we could have an
optional ‘tour’ on the home page, which provides a brief description
of each aspect of the system. This would enable users to navigate in
a more targeted manner in line with their purpose for visiting, rather
than having to explore the web application.

It could be useful for users in the future to see descent methods in
higher dimensions and select what sub-spaces to view. In this way,
it may give users more options for functions they can view.

For the back-end optimization, the plotting of a user-specified
function as a contour plot in d3 using Math.js and loops in Javascript
to manually calculate the gradient descent path can require high
memory usage that results in occasional browser unresponsiveness.
As such, we could explore using other packages or coding languages
that would more efficiently handle the memory load.

ACKNOWLEDGMENTS

The authors wish to thank Professor Arvind Satyanarayan and teach-
ing Assistants Nava Haghighi, Rupayan Neogy and Rishabh Chandra
for sharing their knowledge and patient teaching that enabled this
paper.



REFERENCES

[1] E. Dupont. Optimization algorithms visualization. July 2019.
[2] A. Rana. Why visualize gradient descent optimization? September

2018.
[3] S. Ruder. An overview of gradient descent optimization algorithms. Sep

2019.
[4] E. Saslow. Visualizing gradient descent. November 2018.


	Introduction
	Goals
	Related work
	Detailed Description of System
	Domain Problem Characterization
	Data/Operation Abstract Design
	Methods
	Encoding/Interaction Techniques
	Algorithmic Design


	Results
	Discussion
	Future Work

